THE DATA SCIENCE INTERVIEW BOOK
Buy Me a Coffee ☕FollowForum
  • About
  • Log
  • Mathematical Motivation
  • STATISTICS
    • Probability Basics
    • Probability Distribution
    • Central Limit Theorem
    • Bayesian vs Frequentist Reasoning
    • Hypothesis Testing
    • ⚠️A/B test
  • MODEL BUILDING
    • Overview
    • Data
      • Scaling
      • Missing Value
      • Outlier
      • ⚠️Sampling
      • Categorical Variable
    • Hyperparameter Optimization
  • Algorithms
    • Overview
    • Bias/Variance Tradeoff
    • Regression
    • Generative vs Discriminative Models
    • Classification
    • ⚠️Clustering
    • Tree based approaches
    • Time Series Analysis
    • Anomaly Detection
    • Big O
  • NEURAL NETWORK
    • Neural Network
    • ⚠️Recurrent Neural Network
  • NLP
    • Lexical Processing
    • Syntactic Processing
    • Transformers
  • BUSINESS INTELLIGENCE
    • ⚠️Power BI
      • Charts
      • Problems
    • Visualization
  • PYTHON
    • Theoretical
    • Basics
    • Data Manipulation
    • Statistics
    • NLP
    • Algorithms from scratch
      • Linear Regression
      • Logistic Regression
    • PySpark
  • ML OPS
    • Overview
    • GIT
    • Feature Store
  • SQL
    • Basics
    • Joins
    • Temporary Datasets
    • Windows Functions
    • Time
    • Functions & Stored Proc
    • Index
    • Performance Tuning
    • Problems
  • ⚠️EXCEL
    • Excel Basics
    • Data Manipulation
    • Time and Date
    • Python in Excel
  • MACHINE LEARNING FRAMEWORKS
    • PyCaret
    • ⚠️Tensorflow
  • ANALYTICAL THINKING
    • Business Scenarios
    • ⚠️Industry Application
    • Behavioral/Management
  • Generative AI
    • Vector Database
    • LLMs
  • CHEAT SHEETS
    • NumPy
    • Pandas
    • Pyspark
    • SQL
    • Statistics
    • RegEx
    • Git
    • Power BI
    • Python Basics
    • Keras
    • R Basics
  • POLICIES
    • PRIVACY NOTICE
Powered by GitBook
On this page

Was this helpful?

  1. PYTHON

Algorithms from scratch

Often companies ask to code different Algorithms from scratch as a part of their craft demo round.

The general steps are as follows:

  1. Get 3 things: The formula for the algorithm, the cost function, the derivatives to be used for gradient descent.

  2. Initialize the weights and bias.

  3. In the fit function set the loop to update the weights in each iteration as per the cost function optimization algorithm.

  4. Create a predict function to predict the values.

  5. Create a test dataset to test if your function works properly.

  6. Plot the results.

PreviousNLPNextLinear Regression

Last updated 1 year ago

Was this helpful?